選單

2014年2月21日 星期五

氫氣鹽水真神!

 (點擊上方圖片進入王群光自然診所官網)

王群光自然診所:台北市羅斯福路三段271號10樓
諮詢電話:886-2-23671086
LINE ID:0919730053
 Wechat ID: a0919730053

題目如何翻譯請多指教。
這是發表在實驗生物學上的一篇評論性文章,是對我們首次發表使用氫氣鹽水治療疾病的,給我們的評價比較高,我們認為是比較客觀。畢竟真金不怕火煉。


HYDROGEN SALINE A REAL GAS
网上全文:
First published online July 17, 2009
Journal of Experimental Biology 212, v-a (2009)
Copyright © 2009 The Company of Biologists Limited
doi: 10.1242/jeb.021592


This Article
Right arrowFull Text (PDF)
Right arrowAlert me when this article is cited
Right arrowAlert me if a correction is posted
Services
Right arrowEmail this article to a friend
Right arrowSimilar articles in this journal
Right arrowAlert me to new issues of the journal
Right arrowDownload to citation manager
Right arrowreprints & permissions
Google Scholar
Right arrowArticles by Milton, S. L.
PubMed
Right arrowArticles by Milton, S. L.
Social Bookmarking
Add to CiteULike Add to Complore Add to Connotea Add to Del.icio.us Add to Digg Add to Reddit Add to Technorati Add to Twitter
What's this?

Outside JEB


HYDROGEN SALINE A REAL GAS
Sarah L. Milton
Florida Atlantic University
smilton@fau.edu



Figure 1

The 2005 announcement in Science that the inhalation of hydrogen sulfide gas (H2S) could induce a reversible hypometabolic state in mice, similar to suspended animation, set off a flurry of speculation and investigation into the mechanisms and potential therapies suggested by the discovery, from the possibility of extended space travel to improving the outcome after a stroke. Breathing the gas decreased body temperature, respiratory and heart rates, and activity levels, all without incurring brain damage. The initial report was followed by the determination that mice could tolerate hours of otherwise lethal hypoxia if exposed to the gas first, suggesting H2S as a potential therapy for hypoxia-related diseases. Cessation of blood flow (ischemia) and reperfusion, as occurs in stroke or during a heart attack, causes both cell death (apoptosis) and inflammation, and the gas has proved to improve survival by combating both of these pathologies. Hydrogen gas alone is also protective against ischemia–reperfusion injuries, primarily by neutralizing free radicals, but utilizing highly flammable hydrogen gas in a clinical setting poses a safety risk. This led Jianmei Cai and his colleagues at the Medical Universities in Shanghai and Shandong to wonder if injecting saline saturated with hydrogen gas could similarly protect newborn rats against ischemia, as reductions in blood flow or oxygen during birth can lead to significant brain damage.
The investigators first tested three concentrations of hydrogen saline in rat pups subjected to low oxygen (hypoxia) and brain ischemia (reduced blood flow) to determine the best concentration. Hydrogen-saturated saline was injected into the peritoneal cavity and the levels of brain damage determined by staining brain slices to look for dead vs live cells; by examining activity levels of an apoptotic marker (caspase-3) that indicates that cells have died; and by measuring levels of oxidatively damaged lipids, as lipid and protein damage are symptoms of oxidative stress, which continues to damage cells for hours to days after ischemia–reperfusion. The rat pups also underwent behavioral testing to look for overt signs of brain damage.
Cai's group found that 5 ml kg–1 of H2 saline almost completely suppressed the damage that occurred in hypoxic–ischemic rats. The number of live cells in the cortex and hippocampus was significantly higher in hypoxic–ischemic animals that had been treated with H2 saline than in animals that were hypoxic–ischemic but not treated with H2 saline, while the volume of dead cells in H2-treated rats was reduced to non-hypoxic levels. H2 saline also dramatically decreased levels of oxidatively damaged lipids, apoptotic activity and behavioral deficits. The H2-treated rats that had been exposed to ischemia also sustained less brain damage than the untreated rats. They were able to escape a water maze in approximately half the time that it took for ischemic rats to escape, had better postural responses, and wandered less in their cages.
The key neuroprotective effect of hydrogen is apparently its ability to neutralize free radicals, and while suspended animation and space travel may yet be a long way off, research such as this offers hope that we can begin to significantly decrease the mortality and morbidity associated with strokes, heart attacks and neonatal brain disorders.
References

Cai, J., Kang, Z., Liu, K., Liu, W., Li, R., Zhang, J. H., Luo, X. and Sun, X. (2009). Neuroprotective effects of hydrogen saline in neonatal hypoxia–ischemia rat model. Brain Res. 1256,129 -137.[CrossRef][Medline]

HYDROGEN SALINE

http://blog.sciencenet.cn/blog-41174-247399.html


資料來源 http://blog.sciencenet.cn/blog-41174-247399.html 

 (點擊上方圖片進入王群光自然診所官網)

沒有留言:

張貼留言